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Random Data



Permutations

Definition
An permutation of length n is a bijection from the set
[n] = {1, 2, . . . n} to itself. The one-line notation for a
permutation π is

π = π(1)π(2) . . . π(n).

The set of all permutations of length n is denoted Sn.

Examples

I The sequence π = 5172643 is a permutation of length 7.

I The six permutations of length 3 are

S3 = {123, 132, 213, 231, 312, 321}.
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Plotting Permutations

Definition
If π is a permutation of length n, then the plot of π is the set of
points

{(1, π(1)), (2, π(2)), · · · (n, π(n))} ⊂ R2
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Dots on a Plane

Definition
Let A and B be two sets of n points in R2, each with the property
that no two points lie on the same horizontal or vertical line.
Say that A is order isomorphic to B (denoted A ∼ B) if A can be
transformed into B by stretching, contracting, and translating the
axes horizontally and vertically.
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Permutation Patterns

Definition
Let π = π(1)π(2) · · ·π(n) and σ = σ(1)σ(2) · · · σ(k) be two
permutations. π contains σ as a pattern (written σ ≺ π) if there
is some subsequence π(i1)π(i2) . . . π(ik) which is order isomorphic
to the entries of σ (i.e., π(ij ) < π(ik) if and only if σ(j) < σ(k)).

≺

213 ≺ 35142
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Permutation Patterns

Example

The pattern 12 is contained in all permutations except for the
decreasing ones:

12 6≺ n . . . 321.

Definition
If a permutation π does not contain a pattern σ, we say that π
avoids σ. The set of all permutations which avoid a given pattern
(or set of patterns) σ is denoted

Av(σ).
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Pattern Avoidance

Question
Given a pattern, how many permutations (of length n) avoid that
pattern?







Random Data

π = 61 84 31 35 39 28 9 54 6 4 74 71 68 85 98 38 97 45 12 27 57 89 30 5 55 11 58

13 42 32 14 53 2 51 20 56 80 10 43 95 17 50 8 16 15 70 63 81 64 24 52 76 47

7 60 49 82 1 25 75 40 34 83 90 46 100 69 65 93 86 22 96 21 92 3 79 29 41

44 66 94 59 87 37 73 36 72 67 78 19 33 88 62 99 23 91 26 48 18 77

So What?
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Combinatorial Classes

Idea
Every combinatorial object is just some underlying (typically finite)
set with some structure imposed on it.

Definition
A combinatorial class is a set of objects together with a
(non-negative-integer valued) size function, with the property that
there are finitely many objects of each size
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Combinatorial Classes

Graphs

•
1
•
2
•
3
•
4
•
5
•
6
•
7
•
8

Matchings

Tournaments Posets Permutations



Operations on Classes

Idea
Classes can be combined by various operations, including union
(denoted ∪) and cartesian product (denoted ·).

Examples

Let G denote the class of all (unlabelled, undirected, simple)
graphs, and let C denote the (sub)class of non-empty connected
graphs. Then

G = C ∪ (C · C) ∪ (C · C · C) ∪ . . .
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Generating Functions

(Loose) Definition

For a class A, the generating function for A is the function
A = ∑n≥0 anz

n, where an is the number of distinct objects within
the class on an underlying set of size n.

Example

For the class S of permutations, the generating function is

∑
n≥0

n!zn.
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Generating Functions

Theorem
If A and B are combinatorial classes with generating funtions
FA(z) and FB(z). Then

FA∪B(z) = A(z) + B(z) = ∑
n≥0

(an + bn)z
n

and

FA·B(z) = A(z) · B(z) = ∑
n≥0

(
n

∑
k=0

akbn−k

)
zn

= a0b0 + (a0b1 + a1b0)z + (a0b2 + a1b1 + a2b0)z
2 + . . .



Graphs

Theorem
Letting G be the class of all graphs, and C be the class of
connected non-empty graphs, we have

G = C ∪ (C · C) ∪ (C · C · C) + . . .

G = C + C 2 + C 3 + . . .

=
C

1− C
,

and also

C =
G

G + 1
.



– Analytic Combinatorics, Phillipe Flajolet and Robert Sedgewick



Dyck Paths

Definition
A Dyck path of length n is a path from (0, 0) to (2n, 0) using the
steps (1, 1) and (1,−1), which never goes below the x-axis.
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Dyck Paths

Let P be the class of Dyck paths, with generating function P(z).

P

P

P = zP2 + 1



So What?

Dyck Paths

T = (z · P · P) ∪ E =⇒ P(z) = P(z)2 + 1.

The quadratic formula gives

P(z) =
1−
√

1− 4z

2z

The binomial theorem gives

P(z) = ∑
n≥0

1

n+ 1

(
2n

n

)
zn

= 1 + z + 2z2 + 5z3 + 14z4 + 42z5 + . . .

The radius of convergence (1/4) gives that, roughly,

pn ≈ 4n.
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Theorem
The 132-avoiding permutations are in bijection with Dyck paths.
(These numbers are called the Catalan numbers.)

Corollary

Almost all permutations contain 132.
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Pattern Occurrences

Counting Patterns

The number of occurrences of σ in π (denoted νσ(π)) is the
number of σ-isomorphic subsets.

526413132 ≺

ν132(526413) = 3
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Random Permutations

ν12 ν21 Avg
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ν123 ν132 ν213 ν231 ν312 ν321 Avg
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Patterns as Random Variables

Theorem (Bóna 2007)

For a (uniformly) randomly selected permutation of length n, the
random variables νσ are asymptotically normal as n approaches
infinity.

Theorem (Janson, Nakamura, Zeilberger 2013)

For a randomly selected permutation of length n and two patterns
σ and ρ, the random variables νσ and νρ are asymptotically jointly
normally distributed as n→ ∞.



Linearity of Expectation

Theorem
Let |σ| = k In a randomly chosen n-permutation,

E [νσ] =

(
n

k

)
1

k !
.



Motivation

Corollary

In Sn, the number of occurrences of a specific pattern depends
only on the length of the pattern. That is, for a pattern σ ∈ Sk ,
we have

νσ(Sn) =
n!
k !

(
n

k

)
.

Question
How does this change when we replace Sn with a proper
permutation class?

123 132 213 231 312 321

Sn

Relative
Occurrences

123 132 213 231 312 321

Avn 123
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Multivariate Generating Functions

Idea
We’ve been using z to record the size of an object. We can also
use other variables to mark other statistics.

Case Study

Given a random Dyck path, what is the expected number times it
touches the axis?
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Expectation

Theorem
If rn is the total number of returns across all length 2n Dyck paths,
then

∑
n≥0

rnz
n = ∂uP(z , u)

∣∣
u=1

=
1−
√

1− 4z

1− 2z +
√

1− 4z

= z + 3z2 + 9z3 + 28z4 + 90z5 + . . . =
3(2n)!

(n+ 2)!(n− 1)!

Corollary

The expected number of runs in a randomly selected Dyck path of
length n is

3n

n+ 2
.
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Higher Moments

Idea
The nth factorial moment can be calculated by taking successive
derivatives of the bivariate generating function.

Theorem
The variance of the number of runs in a random Dyck path of
semilength n is

2(2n+ 1)

(n+ 2)
− 5(2n+ 3)(2n+ 1)

2(n+ 3)(n+ 2)
+

16(2n+ 5)(2n+ 3)(2n+ 1)

(n+ 4)(n+ 3)(n+ 2)
− 9n2

(n+ 2)2



Higher Moments

Idea
The nth factorial moment can be calculated by taking successive
derivatives of the bivariate generating function.

Theorem
The variance of the number of runs in a random Dyck path of
semilength n is

2(2n+ 1)

(n+ 2)
− 5(2n+ 3)(2n+ 1)

2(n+ 3)(n+ 2)
+

16(2n+ 5)(2n+ 3)(2n+ 1)

(n+ 4)(n+ 3)(n+ 2)
− 9n2

(n+ 2)2



Other Objects

This translates immediately to any other object with the same
recursive structure:

P = Z · P ∪ (Z · P)2 ∪ (Z · P)3 ∪ (Z · P)4 . . .
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Patterns Within Av(123)

Theorem (H 2012)

The total nuber of 231 (and 312) patterns is identical within the
sets Avn(123) and Avn(132).
Further, within Avn(123),

ν132 = ν213 ∼
√

n

π
4n,

ν231 = ν312 ∼
n

2
4n,

and ν321 ∼
8

3

√
n3

π
4n.
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ν132 + ν213 + ν231 + ν312 + ν321 =

(
n

3

)
cn

(Both sides count the number of length three patterns)
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2ν132+2ν213+ ν231 + ν312 = (n− 2)ν12

(Count triples containing a 12 pattern . . . )
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Sketch of Proof: Patterns in Av(123)

ν132 = ν213 ν231 = ν312 ν321

(Since Av(123) is closed under inversion)
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Let hn,k denote the total number of peaks at height k in all Dyck
paths of semilength n. Let H(x , u) = ∑n,k≥0 hn,kx
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H(x , u) = ux(H(x , u) + 1)C (x) + xC (x)H(x , u)
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u=1
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=
x3C (x)

(1− 4x)3/2

= x3 + 7x4 + 38x5 + 1876 + . . .



Sketch of Proof: Counting 213 Patterns

Let hn,k denote the total number of peaks at height k in all Dyck
paths of semilength n. Let H(x , u) = ∑n,k≥0 hn,kx

nuk .

H(x , u) =
uxC (x)

1− uxC (x)− xC (x)
.

∑
n≥0

ν213(Av∗n(123))xn = ∑
n≥0

(
k

2

)
hn−1,kx

n

∑
n≥0

ν213(Av∗n(123))xn =
x∂2uH(x)

∣∣
u=1

2

=
x3C (x)

(1− 4x)3/2

= x3 + 7x4 + 38x5 + 1876 + . . .



Sketch of Proof: Counting 213 Patterns

Let hn,k denote the total number of peaks at height k in all Dyck
paths of semilength n. Let H(x , u) = ∑n,k≥0 hn,kx

nuk .

H(x , u) =
uxC (x)

1− uxC (x)− xC (x)
.

∑
n≥0

ν213(Av∗n(123))xn = ∑
n≥0

(
k

2

)
hn−1,kx

n

∑
n≥0

ν213(Av∗n(123))xn =
x∂2uH(x)

∣∣
u=1

2

=
x3C (x)

(1− 4x)3/2

= x3 + 7x4 + 38x5 + 1876 + . . .



Sketch of Proof: Counting 213 Patterns

Let hn,k denote the total number of peaks at height k in all Dyck
paths of semilength n. Let H(x , u) = ∑n,k≥0 hn,kx

nuk .

H(x , u) =
uxC (x)

1− uxC (x)− xC (x)
.

∑
n≥0

ν213(Av∗n(123))xn = ∑
n≥0

(
k

2

)
hn−1,kx

n

∑
n≥0

ν213(Av∗n(123))xn =
x∂2uH(x)

∣∣
u=1

2

=
x3C (x)

(1− 4x)3/2

= x3 + 7x4 + 38x5 + 1876 + . . .



Sketch of Proof: Counting 213 Patterns

Let hn,k denote the total number of peaks at height k in all Dyck
paths of semilength n. Let H(x , u) = ∑n,k≥0 hn,kx

nuk .

H(x , u) =
uxC (x)

1− uxC (x)− xC (x)
.

∑
n≥0

ν213(Av∗n(123))xn = ∑
n≥0

(
k

2

)
hn−1,kx

n

∑
n≥0

ν213(Av∗n(123))xn =
x∂2uH(x)

∣∣
u=1

2

=
x3C (x)

(1− 4x)3/2

= x3 + 7x4 + 38x5 + 1876 + . . .



Sketch of Proof: Counting 213 Patterns

Let hn,k denote the total number of peaks at height k in all Dyck
paths of semilength n. Let H(x , u) = ∑n,k≥0 hn,kx

nuk .

H(x , u) =
uxC (x)

1− uxC (x)− xC (x)
.

∑
n≥0

ν213(Av∗n(123))xn = ∑
n≥0

(
k

2

)
hn−1,kx

n

∑
n≥0

ν213(Av∗n(123))xn =
x∂2uH(x)

∣∣
u=1

2

=
x3C (x)

(1− 4x)3/2

= x3 + 7x4 + 38x5 + 1876 + . . .



What We Know

Av(2413, 3142)

Av 132 Av 132 Av 132 Av 132Av 321 Av 123



Combinatorial Classes

Graphs

•
1
•
2
•
3
•
4
•
5
•
6
•
7
•
8

Matchings

Tournaments Posets Permutations


