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Definition
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Permutations

Definition
An permutation of length n is a bijection from the set
[n] = {1,2,...n} to itself. The one-line notation for a

permutation 7T is

The set of all permutations of length n is denoted &,,.

Examples

» The sequence 7T = 5172643 is a permutation of length 7.

» The six permutations of length 3 are

S3 = {123,132,213, 231, 312, 321}.
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Plotting Permutations

Definition
If 77 is a permutation of length n, then the plot of 7t is the set of
points

(L 7(D), 2. 7(2), - (m 7(n))} C B2

T = 35142
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that no two points lie on the same horizontal or vertical line.

Say that A is order isomorphic to B (denoted A ~ B) if A can be
transformed into B by stretching, contracting, and translating the
axes horizontally and vertically.
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Dots on a Plane

Definition

Let A and B be two sets of n points in R?, each with the property
that no two points lie on the same horizontal or vertical line.

Say that A is order isomorphic to B (denoted A ~ B) if A can be
transformed into B by stretching, contracting, and translating the
axes horizontally and vertically.

Example

5 5 5

° 4 ° °

3 J 4 4
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to the entries of o (i.e., 7t(ij) < 7t(ix) if and only if o(j) < o (k)).
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Let T = 7r(1)7t(2)---7t(n) and ¢ = (1) (2) - - - o (k) be two
permutations. 7T contains ¢ as a pattern (written o < 71) if there
is some subsequence 7t(i1)7t(i2) ... 7(ix) which is order isomorphic
to the entries of o (i.e., 7t(ij) < 7t(ix) if and only if o(j) < o (k)).

213 < 35142
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Permutation Patterns

Example
The pattern 12 is contained in all permutations except for the

decreasing ones:
12 A n...321.

Definition

If a permutation 7t does not contain a pattern o, we say that 7t
avoids 0. The set of all permutations which avoid a given pattern
(or set of patterns) ¢ is denoted

Av(o).
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1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321




Pattern Avoidance

Question
Given a pattern, how many permutations (of length n) avoid that
pattern?
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Enumerations of specific permutation classes

WIKIPEDIA

[Rerechesropedl From Wikipedia, the free encyclopedia

Main page In the study of permutation patterns, there has been considerable interest in enumerating specific permutation classes, especially those
Contents

with relatively few basis elements.
Fealtured content

Current events Contents [show]
Random article
Donate to Wikipedia
Wikipedia store Classes avoiding one pattern of length 3 (edit)
'me:‘I”Q" There are two symmetry classes and a single Wil class for single permutations of length three.
elp

AL B sequence enumerating Av,(B) OEIS type of seq exact enur i

Community portal

Recent changes 123 algebraic (nonrational) g.f.  MacMahon (1916)

Contact page 1,2, 5, 14, 42, 132, 429, 1430, ... | AD0O108

231 Catalan numbers Knuth (1868)

Tools

What links here A

Related changes Classes avoiding one pattern of length 4 [edi]

Upload il

o There are seven symmetry classes and three Wilf classes for single permutations of length four.

Special pages

Permanent link

Page information B sequence enumerating Avp(B) OEIS type of sequence exact enumeration reference

Wikidata item 1342

Cite this page 2413 1,2, 8,23, 103, 512, 2740, 15485, ... A022558  algebraic (nonrational) g.f. Béna (1997)
Print/export

Create a book 1234

Download as PDF 1243

Printable version 1432 1,2, 6, 23, 103, 513, 2761, 15767, ... AD05802 | holonomic (nonalgebraic) g.f. | Gessel (1890)
Languages & 2143

# Add links

1324 1,2, 86, 23, 103, 513, 2762, 15793, ... | AD61552



Classes avoiding two patterns of length 4 [edit)

There are 56 symmetry classes and 38 Wilf equivalence classes. Only 8 of these remain unenumerated, and the generating functions for
3 of those B classes are conjectured not to satisfy any algebraic differential equation (ADE) by Albert et al. (preprint); in particular, their
conjecture would imply that the generating functions are not D-finite.

sequence enumerating

B OEIS type of sequence exact enumeration reference
Av,(B)
4321, |[1,2, 8, 22, 86, 306, 882, ) ;
A206736 | finite Erd6s-Szekeres theorem
1234 1764, ...
4312, |[1,2, 6, 22, 86, 321, 1085, _ .
A116705 | polynomial Kremer & Shiu (2003)
1234 3266, ...
4321, |[1,2, 6, 22, 86, 330, 1198, _ .
A116708 | rational g.f. Kremer & Shiu (2003}
3124 4087, ...
4312, |1, 2, 6, 22, 86, 330, 1206, _ .
A116706 | rational g.f. Kremer & Shiu (2003}
2134 4174, ...
4321, |1,2, 8, 22, 86, 332, 1217, _
A165524 | polynomial Vatter (2012)
1324 4140, ...
4321, |1,2, 8, 22, 86, 333, 1235, _ . .
A165525 | rational g.f. Albert, Atkinson & Brignall (2012)
2143 4339, ...
4312, |1, 2,6, 22, B6, 335, 1266, . . .
A165526 | rational g.f. Albert, Atkinson & Brignall (2012)
1324 4598, ...
4231, 1,2, 6, 22, 86, 335, 1271, . : :
A165527 | rational g.f. Albert, Atkinson & Brignall (2011)
2143 4680, ...
4231, 1,2, 6, 22, 86, 336, 1282, . .
A165528 | rational g.f. Albert, Atkinson & Vatter (2009)
1324 4758, ...

4213, 1, 2, 6, 22, 86, 336, 1290, . .
A116708 | rational g.f. Kremer & Shiu (2003)
2341 4870, ...
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Random Data

T=161843135392895464747168 8598 3897 45 12 27 57 89 30 555 11 58
13 42 32 14 53 2 51 20 56 80 10 43 95 17 50 8 16 15 70 63 81 64 24 52 76 47
76049 821 25 75 40 34 83 90 46 100 69 65 93 86 22 96 21 92 3 79 29 41

44 66 94 59 87 37 73 36 72 67 78 19 33 88 62 99 23 91 26 48 18 77

So What?
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Combinatorial Classes

Idea
Every combinatorial object is just some underlying (typically finite)
set with some structure imposed on it.



Combinatorial Classes

Idea
Every combinatorial object is just some underlying (typically finite)
set with some structure imposed on it.

Definition

A combinatorial class is a set of objects together with a
(non-negative-integer valued) size function, with the property that
there are finitely many objects of each size



Combinatorial Classes

2 15335873
Graphs Matchings

e

Tournaments Posets Permutations
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ldea
Classes can be combined by various operations, including union
(denoted U) and cartesian product (denoted -).



Operations on Classes

ldea
Classes can be combined by various operations, including union
(denoted U) and cartesian product (denoted -).

Examples

Let G denote the class of all (unlabelled, undirected, simple)
graphs, and let C denote the (sub)class of non-empty connected
graphs. Then

g=Ccu(C-c)u(Cc-Cc-C)U...
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Generating Functions

(Loose) Definition

For a class A, the generating function for A is the function
A =) .,>0anz", where aj, is the number of distinct objects within
the class on an underlying set of size n.

Example

For the class S of permutations, the generating function is

Z n'z".

n>0



Generating Functions

Theorem

If A and B are combinatorial classes with generating funtions
Fa(z) and Fg(z). Then

Faos(2) = A2) + B(2) = 1 (an + by)2"

n>0

and

FA.B(Z) = A(Z) . Z (Z akb,, k>

n>0

= agbo + (aghy + a1bo)z + (agb2 + a1by + axho) 2% + ...



Graphs

Theorem
Letting G be the class of all graphs, and C be the class of
connected non-empty graphs, we have

g=Ccu(-cyuc-Cc-C)+...
G=C+C>’+C3+...

and also



1.7. PERSPECTIVE 93

1. The main constructions of disjoint union (combinatorial sum), product, sequence, powerset,
multiset, and cycle and their translation into generating functions (Theorem I.1).

Construction OGF
Union A=B+C A(2) =B() +C(2)
Product A=BxC A(z) = B() - C(2)
Sequence A = SEQ(B) Ag) =

_
1-B(2)
Powerset A =PSET(B) | A(z) =exp (B(z) - %B(zz) +-. )

Multiset A4 = MSET(B) | A(z) =exp (B(Z) + %3(12) + .. )

1 1
Cycle A=Cyc(B) | A(z) =log - 5G) + 2

lo + -
E1-B

— Analytic Combinatorics, Phillipe Flajolet and Robert Sedgewick
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A Dyck path of length n is a path from (0,0) to (2n,0) using the
steps (1,1) and (1, —1), which never goes below the x-axis.
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Dyck Paths

Let P be the class of Dyck paths, with generating function P(z).

/ P

P=zP?>+1
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So What?
Dyck Paths

T=(zP-P)UE = P(z)=P(2)%+1.

The quadratic formula gives

The binomial theorem gives

Pl2) =), nJlrl <2nn>zn

n>0

=142z+4+22°2+523 +14z* +422° + ...

The radius of convergence (1/4) gives that, roughly,

pn = 4"
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How Many Permutations Avoid 1327

Av(132)

Av(132)

Theorem

The 132-avoiding permutations are in bijection with Dyck paths.
(These numbers are called the Catalan numbers.)

Corollary

Almost all permutations contain 132.
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Counting Patterns

The number of occurrences of ¢ in 7t (denoted V(7)) is the
number of o-isomorphic subsets.

132 < 526413
1/132(526413) =3
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Random Permutations

V12 V21 Avg
2803 2147 | 2475

V123 V132 V213 V231 V312 V321 Avg
35357 30063 31414 22321 23348 19197 | 26950



Patterns as Random Variables

Theorem (Béna 2007)

For a (uniformly) randomly selected permutation of length n, the
random variables v, are asymptotically normal as n approaches
infinity.

Theorem (Janson, Nakamura, Zeilberger 2013)

For a randomly selected permutation of length n and two patterns
o and p, the random variables v, and v, are asymptotically jointly
normally distributed as n — oo.



Linearity of Expectation

Theorem
Let |o| = k In a randomly chosen n-permutation,

E [vo] = (Z);



Motivation

Corollary
In &, the number of occurrences of a specific pattern depends
only on the length of the pattern. That is, for a pattern o € Gy,

we have |
n'/n



Motivation

Corollary

In &, the number of occurrences of a specific pattern depends
only on the length of the pattern. That is, for a pattern o € Gy,

we have |
n' (n
Question

How does this change when we replace &, with a proper
permutation class?



Motivation

Corollary

In &, the number of occurrences of a specific pattern depends
only on the length of the pattern. That is, for a pattern o € S,

we have \
n' /n
se=2()

Question
How does this change when we replace &, with a proper
permutation class?

Relative
Occurrences

123 132 213 231 312 321

S



Motivation

Corollary

In &, the number of occurrences of a specific pattern depends
only on the length of the pattern. That is, for a pattern o € S,

we have \
n' /n
se=2()

Question
How does this change when we replace &, with a proper
permutation class?

Relative
Occurrences

123 132 213 231 312 321 123 132 213 231 312 321

S, Av, 123
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Main Theorems

Theorem (Bdna 2010)
In Av, 132 we have

n2

V123 ~~ ?

\/En5/2
V213 ~~ 3
3

V31 ~ —
6

Theorem (H 2012)
In Av, 123 we have

n?

Viz2 ~ —
27
\/En5/2
V231 ~~
8

3
V321 ~ —
6




Main Theorems

Theorem (Béna 2010) Theorem (H 2012)
In Av,, 132 we have In Av, 123 we have
n2 n2
V123 ~~ B) V132 ~ 7
y tn°/? y rTn®/?
213 3 231 8
v nj v i
3217 & 321~ ¢

Theorem (Albert, H, Pantone 2014)

The equipopularity classes of the separable permutations (a
superclass of Av 132) are in bijection with integer partitions (and
also we can count them based on the partition).
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Let P be the class of Dyck paths, with generating function P(z).

o P P P
|
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Dyck Paths

Let P be the class of Dyck paths, with generating function P(z).

o P P P
|

P=1+xP+x?P?+3P3 + x*P* 4+ x5P5 + . ..

1
 1—xP

P(1—-xP) =1 P = xP?+1
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Idea
We've been using z to record the size of an object. We can also
use other variables to mark other statistics.



Multivariate Generating Functions

ldea
We've been using z to record the size of an object. We can also

use other variables to mark other statistics.

Case Study
Given a random Dyck path, what is the expected number times it
touches the axis?
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Dyck Path Returns

uP(z) uP(z) uP(z)
S | | |

P(z,u) = zuP(z,1) + 220*P(z,1)> + v*2°P(2,1)3 + ...
_zuP(z,1)
1—zuP(z,1)
1—+v1—-4z
2 ut eIz




Dyck Path Returns

In [
In [
In [
In [
In L

ut[4

n [

In [5]: f
In [6]:
Out[6]:

I_II_II_II_II_II_II_I

from sympy import var, sqrt
z, u, f, fz1 = var('z u f fz1")

: fzl = (1 - sgrt(1-4*z))/(2*z)
: fzl.series(z, @, 6)

1+ z + 2%Z*%*%2 + 5%z%*3 + 14*z**4 + 42%2**5 + 0(z**6)

= (z*u*fz1)/(1 - z*u*fzl)
f.series(z,0,4)
Z¥¥2*¥(UF*2 + u) + z*¥¥3*F(Ur*3 + 2*ur*2 + 2*U) + u*z + 0(z**4)



Dyck Path Returns

In [
In [
In [
In [
In L

ut[4

n [

In [5]: f
In [6]:
Out[6]:

I_II_II_II_II_II_II_I

from sympy import var, sqrt
z, u, f, fz1 = var('z u f fz1")

: fzl = (1 - sgrt(1-4*z))/(2*z)
: fzl.series(z, @, 6)

1 + z + 2%z*%*2 + S5*z**3 4 14%z**%4 4 42%7**5 + 0(z**6)
= (z*u*fz1)/(1 - z*u*fzl)

f.series(z,0,4)
Z*¥¥2¥(u**2 + u) + z**¥3*(u**3 + 2*¥u**2 + 2*u) + u*z + 0(z**4)
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Expectation

Theorem
If r, is the total number of returns across all length 2n Dyck paths,
then

Z rmz" = 9,P(z, u)‘u:l

n>0
114z
1 -274+/1—4z

= z+4+322+923 4+ 282 +902° + ...




Expectation

Theorem
If r, is the total number of returns across all length 2n Dyck paths,
then

Z rmz" = 9,P(z, u)‘u:l

n>0
 1- 14z
C1-2z+4+1—14z
— 743224973 + 282 + 9025 + . .. 3(2n)!
(n+2)!{(n—1)!

Corollary

The expected number of runs in a randomly selected Dyck path of

length n is
3n

n+2°




Higher Moments

ldea
The nth factorial moment can be calculated by taking successive
derivatives of the bivariate generating function.



Higher Moments

ldea
The nth factorial moment can be calculated by taking successive

derivatives of the bivariate generating function.

Theorem
The variance of the number of runs in a random Dyck path of

semilength n is

2(2n+1) 5(2n+3)(2n+1) 16(2n+5)(2n+3)(2n+1) 9n?

(n+2) 2(n+3)(n+2) (n+4)(n+3)(n+2) (n+2)2



Other Objects

This translates immediately to any other object with the same
recursive structure:

P=Z2-PU(Z-PPU(Z-P)U(Z-P)*...



Random Restricted Data



Random Restricted Data

Random 123-avoider

Random 132-avoider



Data



Data

Av 132
length 123 132 213 231 312 321
3 1 0 1 1 1 1

4 10 0 11 11 11 13
5 68 0 81 81 81 109
6 392 0 500 500 500 748
7 2063 0 2794 2794 2794 4570



Data

Av 132
length 123 132 213 231 312 321
3 1 0 1 1 1 1

4 10 0 11 11 11 13
5 68 0 81 81 81 109
6 392 0 500 500 500 748
7 2063 0 2794 2794 2794 4570

Av 123

length 123 132 213 231 312 321
3 0 1 1 1 1 1



Data

Av 132
length 123 132 213 231 312 321
3 1 0 1 1 1 1

4 10 0 11 11 11 13
5 68 0 81 81 81 109
6 392 0 500 500 500 748
7 2063 0 2794 2794 2794 4570

Av 123

length 123 132 213 231 312 321
3 0 1 1 1 1 1
4 0 9 9 11 11 16



Data

Av 132
length 123 132 213 231 312 321
3 1 0 1 1 1 1

4 10 0 11 11 11 13
5 68 0 81 81 81 109
6 392 0 500 500 500 748
7 2063 0 2794 2794 2794 4570

Av 123

length 123 132 213 231 312 321
3 0 1 1 1 1 1
0 9 9 11 11 16
0 57 57 81 81 144
0 312 312 500 500 1016
0 1578 1578 2794 2794 6271
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Counting Patterns within Av 132

Sketch of proof:
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Sketch of proof:
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Av(132)




Counting Patterns within Av 132

Sketch of proof:

Av(132)

Av(132)




Patterns Within Av(123)



Patterns Within Av(123)

Theorem (H 2012)

The total nuber of 231 (and 312) patterns is identical within the
sets Av,(123) and Av,(132).



Patterns Within Av(123)

Theorem (H 2012)

The total nuber of 231 (and 312) patterns is identical within the
sets Av,(123) and Av,(132).
Further, within Av,(123),

n n
V132 = V213 ~ 4/ —4",
T

n n
Vo31 = V312 ~ 54 ,

8 3
and  v3p1 ~ 5\/ %4".



Sketch of Proof: Patterns in Av(123)



Sketch of Proof: Patterns in Av(123)

V132 V213 V231 V312 V321



Sketch of Proof: Patterns in Av(123)

n
V132 + V213 + V231 + V312 + V321 = <3> Cn

(Both sides count the number of length three patterns)



Sketch of Proof: Patterns in Av(123)

2v132+21213+ V231 + V312 = (n—2)v12

(Count triples containing a 12 pattern ...)



Sketch of Proof: Patterns in Av(123)

V132 V213 V231 V312 V321




Sketch of Proof: Patterns in Av(123)

V132 = V213 V231 = V312 V321

(Since Av(123) is closed under inversion)



Sketch of Proof: Patterns in Av(123)

V213 V231 V321




Sketch of Proof: Patterns in Av(123)

V213 V231 V321




Sketch of Proof: Counting 213 Patterns
Let p=4376152, and count 213 patterns.
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Let p=4376152, and count 213 patterns.
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Sketch of Proof: Counting 213 Patterns
Let p=4376152, and count 213 patterns.
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Sketch of Proof: Counting 213 Patterns

Let h, , denote the total number of peaks at height k in all Dyck

paths of semilength n. Let H(x, u) = ¥, >0 hnkx"u*.
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Sketch of Proof: Counting 213 Patterns

Let h, , denote the total number of peaks at height k in all Dyck

paths of semilength n. Let H(x, u) = ¥, >0 hnkx"u*.

uH(x, u) H(x, u)

H(x,u) = ux(H(x,u) +1)C(x) + xC(x)H(x, u)



Sketch of Proof: Counting 213 Patterns

Let hj, x denote the total number of peaks at height k in all Dyck
paths of semilength n. Let H(x, u) = ¥, >0 hnxx"u".

_ uxC(x)
1 —uxC(x) —xC(x)

H(x, u)



Sketch of Proof: Counting 213 Patterns

Let hj, x denote the total number of peaks at height k in all Dyck
paths of semilength n. Let H(x, u) = ¥, >0 hnxx"u".

_ uxC(x)
1 —uxC(x) —xC(x)
Y vars(Avy(123))x" = ¥ (g) "

n>0 n>0

H(x, u)



Sketch of Proof: Counting 213 Patterns
Let hj, x denote the total number of peaks at height k in all Dyck
paths of semilength n. Let H(x, u) = ¥, >0 hnxx"u".

uxC(x)
1 —uxC(x) —xC(x)

Y v213(Av(123))x" = ) (g) hp_1 kX"

n>0 n>0

O2H
Y var3(AvE(123))x" = XGH )],y
n>0 2

H(x, u) =



Sketch of Proof: Counting 213 Patterns
Let hj, x denote the total number of peaks at height k in all Dyck
paths of semilength n. Let H(x, u) = ¥, >0 hnxx"u".

uxC(x)
1 —uxC(x) —xC(x)

Y v213(Av(123))x" = ) (g) hp_1 kX"

H(x, u) =

n>0 n>0
9°H

2 v213(Av;,(123))x" = Lx)lu:l

n>0 2
x3C(x)

(1— 4x)3/2



Sketch of Proof: Counting 213 Patterns

Let hj, x denote the total number of peaks at height k in all Dyck
paths of semilength n. Let H(x, u) = ¥, >0 hnxx"u".

uxC(x)
1 —uxC(x) —xC(x)

Y v213(Av(123))x" = ) (g) hp_1 kX"

H(x, u) =

n>0 n>0
9°H
2 v213(Av;,(123))x" = Lx)lu:l
n>0 2
_C)
T (1—4x)3/?

=x3+7x*+38x> +187° + ...



Sketch of Proof: Counting 213 Patterns

Let hj, x denote the total number of peaks at height k in all Dyck
paths of semilength n. Let H(x, u) = ¥, >0 hnxx"u".

H(x, u)

Z V213 (AV2<123> )Xn

n>0

Y va13(Av;(123))x" =

n>0

uxC(x)
1 —uxC(x) —xC(x)
)
= hnfl,an
L
xagH(X)’uzl
2
x3C(x)
(1 —4x)3/2
=x3+7x* +38x° +187° + ...




What We Know

Av(2413,3142)

Av321 - Av123 Av132 - Av132 - Av132 - Av132



Combinatorial Classes

§ 15335573
Graphs Matchings
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VN1

Tournaments Posets Permutations



