Cheyne Homberger

Equipopularity in the Separable Permutations

with Michael Albert and Jay Pantone

Abstract:

When two patterns occur equally often in a set of permutations, we say that these patterns are equipopular. Using both structural and analytic tools, we classify the equipopular patterns in the set of separable permutations. In particular, we show that the number of equipopularity classes for length $n$ patterns in the separable permutations is equal to the number of partitions of $n-1$.